
MyID PIV
Version 12.8

MyID Core API

Document reference: IMP2007-12.8.0-PIV September 2023

Lutterworth Hall, St Mary's Road, Lutterworth, Leicestershire, LE17 4PS, UK
www.intercede.com | info@intercede.com | @intercedemyid | +44 (0)1455 558111

MyID Core API Page 2 of 49

Copyright
© 2001-2023 Intercede Limited. All rights reserved.

Information in this document is subject to change without notice. The software described in
this document is furnished exclusively under a restricted license or non-disclosure
agreement. Copies of software supplied by Intercede Limited may not be used resold or
disclosed to third parties or used for any commercial purpose without written authorization
from Intercede Limited and will perpetually remain the property of Intercede Limited. They
may not be transferred to any computer without both a service contract for the use of the
software on that computer being in existence and written authorization from Intercede
Limited.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in
any form or any means electronic or mechanical, including photocopying and recording for
any purpose other than the purchaser's personal use without the written permission of
Intercede Limited.

Whilst Intercede Limited has made every effort in the preparation of this manual to ensure the
accuracy of the information, the information contained in this manual is delivered without
warranty, either express or implied. Intercede Limited will not be held liable for any damages
caused, or alleged to be caused, either directly or indirectly by this manual.

Licenses and Trademarks
The Intercede® and MyID® word marks and the MyID® logo are registered trademarks of
Intercede in the UK, US and other countries.

Microsoft and Windows are registered trademarks of Microsoft Corporation. Other brands
and their products are trademarks or registered trademarks of their respective holders and
should be noted as such. All other trademarks acknowledged.

Apache log4net
Copyright 2004-2021 The Apache Software Foundation

This product includes software developed at

The Apache Software Foundation (https://www.apache.org/).

MyID Core API Page 3 of 49

Conventions used in this document
• Lists:

• Numbered lists are used to show the steps involved in completing a task when the
order is important.

• Bulleted lists are used when the order is unimportant or to show alternatives.

• Bold is used for menu items and for labels.

For example:

• Record a valid email address in ‘From’ email address.

• Select Save from the File menu.

• Italic is used for emphasis:

For example:

• Copy the file before starting the installation.

• Do not remove the files before you have backed them up.

• Bold and italic hyperlinks are used to identify the titles of other documents.
For example: "See the Release Notes for further information."
Unless otherwise explicitly stated, all referenced documentation is available on the
product installation media.

• A fixed width font is used where the identification of spaces is important, including
filenames, example SQL queries and any entries made directly into configuration files or
the database.

• Notes are used to provide further information, including any prerequisites or
configuration additional to the standard specifications.

For example:

Note: This issue only occurs if updating from a previous version.

• Warnings are used to indicate where failure to follow a particular instruction may result in
either loss of data or the need to manually configure elements of the system.

For example:

Warning: You must take a backup of your database before making any changes to it.

MyID Core API Page 4 of 49

Contents

MyID Core API 1
Copyright 2
Conventions used in this document 3
Contents 4
1 Introduction 6
2 Configuring access 7

2.1 Accessing the API documentation 8
2.2 Accessing the API features 10

2.2.1 Scope 11
3 Server-to-server authentication 12

3.1 Configuring MyID for server-to-server authentication 12
3.1.1 Allowing the Client Credentials OAuth2 logon mechanism 12
3.1.2 Creating a role for the external system 13
3.1.3 Selecting a group for the user account 13
3.1.4 Creating a user account for the external system 14

3.2 Configuring web.oauth2 for server-to-server authentication 14
3.2.1 Creating a shared secret 15
3.2.2 Configuring the authentication service 17

3.3 Obtaining a server-to-server access token 20
3.3.1 Requesting an access token 20
3.3.2 Providing a client identifier 22

4 End-user authentication 23
4.1 Configuring web.oauth2 for end-user based authentication 23

4.1.1 Configuring the authentication service for PKCE 23
4.1.2 Configuring the authentication service for a client secret 26

4.2 Obtaining an end-user based access token using PKCE 30
4.2.1 Generating a PKCE code verifier and code challenge 30
4.2.2 Requesting an authorization code 31
4.2.3 Requesting an access token 32

4.3 Obtaining an end-user based access token using a client secret 33
4.3.1 Requesting an authorization code 33
4.3.2 Requesting an access token 34

4.4 Using refresh tokens 35
4.4.1 Configuring the authentication server 36
4.4.2 Obtaining the authorization code 37
4.4.3 Obtaining the access and refresh tokens 37
4.4.4 Using the refresh token to obtain a new access token 38

4.5 Revoking access tokens 39
5 Calling the API 40

5.1 Calling the API from an external system 40
5.2 Calling the API from the documentation 41

5.2.1 Calling the API from the documentation using server-to-server authentication 41
5.2.2 Calling the API from the documentation using end-user authentication 42

MyID Core API Page 5 of 49

6 Operation extension 45
6.1 Obtaining an operation extension token 45
6.2 Obtaining an extension token for Select Security Device 46

7 Troubleshooting 48

MyID Core API Page 6 of 49

1 Introduction
The MyID® Core API gives you access to the features used in the MyID Operator Client using
a REST-based API, allowing you to integrate into other business systems that provide
information to MyID or to trigger credential lifecycle events.

The API is secure by default, requiring authentication of the calling system in order to use the
API and restricting access to available features and data using MyID role-based access and
scope control.

You can use the API for such actions as:

• Searching and retrieving information about a person, device or request.

• Adding or updating a person’s information in MyID.

• Managing the lifecycle of people, devices, and requests.

Comprehensive API documentation is provided, including schema information to simplify
integration development.

MyID Core API Page 7 of 49

2 Configuring access
This section provides details of configuring access to the API:

• For details of providing access to the built-in API documentation, see section 2.1,
Accessing the API documentation.

• For details of configuring access to the features of the API, see section 2.2, Accessing
the API features.

MyID Core API Page 8 of 49

2.1 Accessing the API documentation
The API documentation is provided on the API server at the following address:
https://<myserver>/rest.core/swagger/index.html

where <myserver> is the name of the server hosting the web service.

If necessary, you can configure the API documentation to prevent access. You can also to
configure the API documentation to provide details of error codes, and to allow you to use the
documentation as a test harness, subject to the appropriate authentication.

To configure access the API documentation:

1. In a text editor, open the appsettings.Production.json file for the web service.

By default, this is:
C:\Program Files\Intercede\MyID\rest.core\appsettings.Production.json

This file is the override configuration file for the appsettings.json file for the web
service. If this file does not already exist, you must create it in the same folder as the
appsettings.json file, and include the following:

{
"MyID": {
"SwaggerApiDocumentation": {

"GenerateDocumentation": true,
"DocumentErrorCodes": false,
"DocumentMIReports": true,
"AllowTestFromDocumentation": false,
"ShowPermissions": false

 }
 }
}

If the appsettings.Production.json file already exists, add the above
SwaggerApiDocumentation section to the file.

2. Edit the following values:

• GenerateDocumentation – set to false to prevent access to the documentation.

• DocumentErrorCodes – set to true to include details of the web service error
messages associated with HTTP status codes.

Note: If you are consuming the Swagger output using an external tool, you may
experience compatibility issues if you set this value to true; set
DocumentErrorCodes to false to prevent this.

• DocumentMIReports – set to true to include details of Management Information
reports.

• AllowTestFromDocumentation – set to true to allow you to use the documentation
as a test harness, subject to the appropriate authentication. When you enable this
option, the API documentation provides authentication instructions at the top of the
page; see also section 5.2, Calling the API from the documentation.

• ShowPermissions – set to true to display the permissions required for each API call.
See section 2.2, Accessing the API features for more information.

MyID Core API Page 9 of 49

3. Save the appsettings.Production.json file.

4. Recycle the web service app pool:

a. On the MyID web server, in Internet Information Services (IIS) Manager, select
Application Pools.

b. Right-click themyid.rest.core.pool application pool, then from the pop-up menu
click Recycle.

This ensures that the web service has picked up the changes to the configuration file.

5. Open a web browser, and navigate to the following URL:
https://<myserver>/rest.core/swagger/index.html

where <myserver> is the name of the server hosting the web service.

MyID Core API Page 10 of 49

2.2 Accessing the API features
Access to features of the MyID Core API is controlled using MyID roles.

For example, the MyID Operator Client feature that allows you to view a person's images
(View Person's Images) is enabled if the operator has a role with one of the following
permissions:

• Add Person

• Approve Person

• Edit Person

• Edit PIV Applicant

• Initial PIV Enrollment

• Request Card

• Request Replacement Card

• Update PIV Applicant

• Unapprove Person

• View Person

If the operator account has access to any of these permissions, it can use the corresponding
API call:
• GET /api/People/{id}/images/{imageField}

For information on setting role permissions, see the Roles section in the Administration
Guide.
Note: As development of the API proceeds in advance of the development of the MyID
Operator Client, you may find some API features that do not correspond to Operator Client
features. These features do not have role-based restrictions placed on them; however, the
object of the operations will always respect the scope of the operator user.

To determine what permissions are required for an API call, set the ShowPermissions option
to true in the rest.core configuration file; see section 2.1, Accessing the API documentation
for details.

This adds a section to the API documentation that lists the permissions for each API call, and
which roles currently have access:

Administration Guide.pdf
Administration Guide.pdf

MyID Core API Page 11 of 49

2.2.1 Scope
The MyID Core API respects the scope of the operator account used to access the API. For
example, if you are using an operator account in the Finance department that has a role with
a scope of Department, that account can view and access only the people (and their devices,
requests, and so on) who are in the Finance department.

For information on setting roles and scope permissions, see the Scope and security section
in the Administration Guide.

Administration Guide.pdf

MyID Core API Page 12 of 49

3 Server-to-server authentication
This section provides information on setting up server-to-server authentication for the
MyID Core API. This allows you to call the MyID Core API from an external system.

To set up server-to-server authentication, you must carry out the following:

• Configure MyID with a user account that has the appropriate permissions to access the
API.

See section 3.1, Configuring MyID for server-to-server authentication.

• Configure the web.oauth2 web service with the ID of your external system and a shared
secret.

See section 3.2, Configuring web.oauth2 for server-to-server authentication.

• Obtain an access token for your system to use.

See section 3.3,Obtaining a server-to-server access token.

For more information, see the Client Credentials section of theOAuth 2.0 Authorization
Framework:

tools.ietf.org/html/rfc6749#section-1.3.4

3.1 Configuring MyID for server-to-server authentication
The MyID Core API uses a user account to log on to the MyID system. This allows you to
configure access to particular MyID features and groups using the standard roles, groups,
and scope feature of MyID. All actions carried out through the API are audited under this user
account, and if necessary you can disable the account to prevent access to the API.

3.1.1 Allowing the Client Credentials OAuth2 logon mechanism
To allow access to MyID through server-to-server authentication, you must enable the Client
Credentials OAuth2 logon mechanism.

1. In MyID Desktop, from the Configuration category, select Security Settings.

2. On the Logon Mechanisms tab, set the following option:

• Client Credentials OAuth2 Logon – set to Yes to enable server-to-server
authentication, or No to disable it.

3. Click Save changes.

https://tools.ietf.org/html/rfc6749#section-1.3.4

MyID Core API Page 13 of 49

3.1.2 Creating a role for the external system
You are recommended to create a new role to be used for controlling access to MyID from the
external system, rather than using an existing role. This allows you to maintain clear control
over the MyID features the external system can access.

To create the role:

1. In MyID Desktop, from the Configuration category, select Edit Roles.

2. Click Add.

3. Give the role a name; for example, External API.

4. From the Derived from drop-down list, select Allow None.

5. Click Add.

6. Select the options that relate to the API features you want to be able to access through
the API.

See section 2.2, Accessing the API features for a list of which options map to the API end
points.

You are strongly recommended to select only those options that your external system will
need to use.

7. Click Logon Methods.

8. For the role you created, select the Client Credentials OAuth2 logon mechanism, then
clickOK.

9. Click Save Changes.

For more information about using the Edit Roles workflow, see the Roles section in the
Administration Guide.

3.1.3 Selecting a group for the user account
Before you create the user account, you must consider into which group you want to put the
account. The group you select affects the scope of the user.

• If you want to restrict the access of the API to a particular group of users in MyID, put the
API user into the same group, then select a scope of Department or Division when you
specify the role for the user account.

• If you do not want to restrict the access of the API, you are recommended to create a
separate group for the API user, then select a scope of All when you specify the role. Use
the Add Group workflow in MyID Desktop to create the group; you can restrict this group
to the API role only, and assign this as the default role with a scope of All.

See the Adding a group section in theOperator's Guide for details of adding groups,
and the Default roles section in the Administration Guide for details of setting default
roles.

Administration Guide.pdf
Operator's Guide.pdf
Administration Guide.pdf

MyID Core API Page 14 of 49

3.1.4 Creating a user account for the external system
Once you have created the role and decided which group to use, you can create the user
account that the API will use to access MyID.

To add the user account:

1. In the MyID Operator Client, select the People category.

2. Click ADD.

3. Provide a First Name and Last Name; for example, External API.

4. Provide a Logon name; for example, api.external.

5. Select aGroup for the user account.
See section 3.1.3, Selecting a group for the user account above for considerations.

6. Select the Roles for the user account.
Select the role you created for use by the external system. Set the appropriate scope; for
example, All to allow the API to access data related to any user account in the system, or
Division to restrict access data related to accounts in the same group as the API user,
along with any subgroups.

7. Click SAVE.

Make sure you take a note of the logon name for the user; you need this for configuring the
web.oauth2 web service.

3.2 Configuring web.oauth2 for server-to-server authentication
The MyID authentication web service is called web.oauth2; you must configure this web
service to allow access to the API. For server-to-server authentication, you do this using a
client credential grant, which you request using a shared secret.

Note: Before you begin, you must decide on a client ID for your external system; for example,
myid.mysystem. This represents your back-end system that intends to make calls to the
MyID Core API.

MyID Core API Page 15 of 49

3.2.1 Creating a shared secret
Important: You must keep the shared secret safe. This information can be used to grant
authorization to the API, so must be an unguessable value; for this reason, you are
recommended to generate a GUID for the shared secret.

To create a shared secret:

1. Generate a GUID to use as the secret.

For example:
82564d6e-c4a6-4f64-a6d4-cac43781c67c

2. Create a hash of this GUID using SHA-256, and convert it to Base64.

For example:
kv31VP5z/oKS0QMMaIfZ2UrhmQOdgAPpXV/vaF1cymk=

You need this value for the web.oauth2 server. The server does not store the secret, only
the hash.

Important: Do not use this example secret in your own system.

3. Combine your client ID, a colon, and the GUID secret:

For example:
myid.mysystem:82564d6e-c4a6-4f64-a6d4-cac43781c67c

4. Convert this string to Base64.

For example:
bXlpZC5teXN5c3RlbTo4MjU2NGQ2ZS1jNGE2LTRmNjQtYTZkNC1jYWM0Mzc4MWM2N2M=

This is the value you will send in the Authorization header for HTTP basic authentication
when requesting the access token; alternatively, you can pass the client ID and the
shared secret separately in the body as client_id and client_secret parameters.

MyID Core API Page 16 of 49

3.2.1.1 Example
The following PowerShell example script shows the process for generating a shared secret
and creating the hash and Base64 versions you need to configure the web.oauth2 server and
request an access token.

Set the client ID of your calling system
$client_id = "myid.mysystem"

Generate a new GUID to use as the shared secret
$secret = (New-Guid).ToString()

Hash the new GUID using SHA-256
$hasher = [System.Security.Cryptography.HashAlgorithm]::Create("sha256")
$hashOfSecret = $hasher.ComputeHash([System.Text.Encoding]::UTF8.GetBytes($secret))

Convert the hashed secret to Base64
$clientSecret = [Convert]::ToBase64String($hashOfSecret)

Combine the client ID and secret into a single Base64 authorization token
$both = "$client_id`:$secret"
$bytes = [System.Text.Encoding]::UTF8.GetBytes($both)
$combined =[Convert]::ToBase64String($bytes)

Output the results
Write-Output ("`r`nThe shared secret is: `r`n`r`n$secret")
Write-Output ("`r`nAnd the hash of the shared secret in base64 is:`r`n`r`n$clientSecret")
Write-Output ("`r`nStore this value in the ClientSecrets of the web.oauth2 appsettings
file.")
Write-Output ("`r`nThe combined string of the client ID and the shared secret
is:`r`n`r`n$both")
Write-Output ("`r`nAnd in base64 this is: `r`n`r`n$combined")
Write-Output ("`r`nUse this value to request an access token from the web service.")

Wait for a keypress
Write-Host "`r`nPress any key to continue...`r`n" -ForegroundColor Yellow
[void][System.Console]::ReadKey($true)

MyID Core API Page 17 of 49

Example output:

PS C:\Intercede> .\secret.ps1

The shared secret is:

82564d6e-c4a6-4f64-a6d4-cac43781c67c

And the hash of the shared secret in base64 is:

kv31VP5z/oKS0QMMaIfZ2UrhmQOdgAPpXV/vaF1cymk=

Store this value in the ClientSecrets of the web.oauth2 appsettings file.

The combined string of the client ID and the shared secret is:

myid.mysystem:82564d6e-c4a6-4f64-a6d4-cac43781c67c

And in base64 this is:

bXlpZC5teXN5c3RlbTo4MjU2NGQ2ZS1jNGE2LTRmNjQtYTZkNC1jYWM0Mzc4MWM2N2M=

Use this value to request an access token from the web service.

Press any key to continue...

3.2.2 Configuring the authentication service
Once you have created a Base64 version of the hash of the shared secret, you can configure
the web.oauth2 server.

1. In a text editor, open the appsettings.Production.json file for the web service.

By default, this is:
C:\Program Files\Intercede\MyID\web.oauth2\appsettings.Production.json

This file is the override configuration file for the appsettings.json file for the web
service. If this file does not already exist, you must create it in the same folder as the
appsettings.json file.

2. Edit the file to include the following:

{
"Clients": [

{
"ClientId": "<my client ID>",
"ClientName": "<my client name>",
"AccessTokenLifetime": <time>,
"AllowedGrantTypes": [

"client_credentials"
],

"ClientSecrets": [
{

"Value": "<secret>"
 }
],

"AllowedScopes": [

MyID Core API Page 18 of 49

"myid.rest.basic"
],

"Properties": {
"MyIDLogonName": "<my user

account>"
 }
 }
]
 }

where:

• <my client ID> – the client ID you decided on; for example:
myid.mysystem

• <my client name> – an easily readable name for your client system; for example:
My External System

• <time> – the time (in seconds) that the client credential is valid. The default is 3600 –
1 hour.

• <secret> – the Base64-encoded SHA-256 hash of the secret you created; for
example:
kv31VP5z/oKS0QMMaIfZ2UrhmQOdgAPpXV/vaF1cymk=

• <my user account> – the logon name of the user you created to run the API; for
example:
api.external

For example:

{
"Clients": [

{
"ClientId": "myid.mysystem",
"ClientName": "My External System",
"AccessTokenLifetime": 3600,
"AllowedGrantTypes": [

"client_credentials"
],

"ClientSecrets": [
{

"Value": "kv31VP5z/oKS0QMMaIfZ2UrhmQOdgAPpXV/vaF1cymk="
 }
],

"AllowedScopes": [
"myid.rest.basic"

],
"Properties": {

"MyIDLogonName": "api.external"
 }
 }
]
 }

MyID Core API Page 19 of 49

If you already have an appsettings.Production.json file, back up the existing file,
then incorporate the new client section above into the file.

Important: If you have clients in the appsettings.json file and the
appsettings.Production.json file, make sure the production file does not overwrite
the entries in the base file. In these settings files, entries in arrays are determined by their
index; therefore if you have four existing entries in the appsettings.json file, you must
include four blank array entries {}, in the appsettings.Production.json file before
you include your new client details. Alternatively, you can include the entire Clients
array in the appsettings.Production.json file.

3. Save the configuration file.

4. Recycle the web service app pool:

a. On the MyID web server, in Internet Information Services (IIS) Manager, select
Application Pools.

b. Right-click themyid.web.oauth2.pool application pool, then from the pop-up menu
click Recycle.

This ensures that the web service has picked up the changes to the configuration file.

5. Check that the web.oauth2 server is still operational by logging on to the MyID Operator
Client.

Application setting JSON files are sensitive to such issues as comma placement; if the
format of the file is not correct, the web service cannot load the file and will not operate,
which may result in an error similar to:
HTTP Error 500.30 - ANCM In-Process Start Failure

See section 7, Troubleshooting for information on resolving problems that cause HTTP
Error 500.30.

MyID Core API Page 20 of 49

3.3 Obtaining a server-to-server access token
Once you have configured MyID to allow server-to-server access, set up the user account for
the API, configured the shared secret, and set up the web.oauth2 web service to recognize
your external system, you can request an access token that you can then use to call the API.

3.3.1 Requesting an access token
Request the access token from the following location:
https://<myserver>/web.oauth2/connect/token

POST a request in application/x-www-form-urlencoded format.

You must provide the following parameters:
• grant_type=client_credentials

• scope=myid.rest.basic

You must also provide an Authorization header containing "Basic " followed by your client
ID and shared secret, combined in a single Base64 string.

For example, if your client ID is:
myid.mysystem

and the secret is:
82564d6e-c4a6-4f64-a6d4-cac43781c67c

the combination is:
myid.mysystem:82564d6e-c4a6-4f64-a6d4-cac43781c67c

and the Base64 string is:
bXlpZC5teXN5c3RlbTo4MjU2NGQ2ZS1jNGE2LTRmNjQtYTZkNC1jYWM0Mzc4MWM2N2M=

and the authorization token is:
Basic bXlpZC5teXN5c3RlbTo4MjU2NGQ2ZS1jNGE2LTRmNjQtYTZkNC1jYWM0Mzc4MWM2N2M=

MyID Core API Page 21 of 49

Important: Do not use this example secret in your own system.
For example (using cURL):

curl -k -i -H "Content-Type: application/x-www-form-urlencoded" -X POST
"https://myserver.example.com/web.oauth2/connect/token" -d "grant_type=client_
credentials&scope=myid.rest.basic" -H "Authorization: Basic
bXlpZC5teXN5c3RlbTo4MjU2NGQ2ZS1jNGE2LTRmNjQtYTZkNC1jYWM0Mzc4MWM2N2M="

or using PowerShell:

$combined = "bXlpZC5teXN5c3RlbTo4MjU2NGQ2ZS1jNGE2LTRmNjQtYTZkNC1jYWM0Mzc4MWM2N2M="

Set up the body of the request
$body = @{grant_type='client_credentials'
 scope='myid.rest.basic'
 }
Set up the header of the request
$header = @{'Content-Type'='application/x-www-form-urlencoded'
 Authorization="Basic $combined"
 }

Request the access token
Invoke-WebRequest -Method POST -Uri
'https://myserver.example.com/web.oauth2/connect/token' -body $body -Headers $header |
Select-Object -Expand Content

#Wait for a keypress
Write-Host "`r`nPress any key to continue..." -ForegroundColor Yellow

[void][System.Console]::ReadKey($true)

An alternative method, passing the client_id and client_secret in the body rather than in
the header:

Set up the body of the request
$body = @{grant_type='client_credentials'
 scope='myid.rest.basic'
 client_id='myid.mysystem'
 client_secret='82564d6e-c4a6-4f64-a6d4-cac43781c67c'
 }
Set up the header of the request
$header = @{'Content-Type'='application/x-www-form-urlencoded'
 }

Request the access token
Invoke-WebRequest -Method POST -Uri
'https://myserver.example.com/web.oauth2/connect/token' -body $body -Headers $header |
Select-Object -Expand Content

#Wait for a keypress
Write-Host "`r`nPress any key to continue..." -ForegroundColor Yellow

[void][System.Console]::ReadKey($true)

MyID Core API Page 22 of 49

You can also use utilities such as SoapUI:

The request returns a block of JSON containing the following:

• access_token – your access token.

• expires_in – the lifetime in seconds for the token. Once the lifetime has expired, you
must request a new access token.

• token_type – always Bearer.

• scope – the scope configured for the client in the web.oauth2 web service; usually
myid.rest.basic.

You can now use this access token to call the API.

See section 5.1, Calling the API from an external system for more information on using an
access token.

3.3.2 Providing a client identifier
MyID captures the IP address and the client identifier of the PC used to carry out the audited
operation, and stores this information in the audit trail; see the Logging the client IP address
and identifier section in the Administration Guide for more information.
You can provide a client identifier for your grant request by setting a value for the CLIENT_
IDENTIFIER header in the request.

Note: You can change the name of the header if required; the name of the header is specified
in the MyID:ClientIdentifierHeader of the appSettings.json file of the web.oauth2 web
service.

Administration Guide.pdf

MyID Core API Page 23 of 49

4 End-user authentication
This section provides information on setting up end-user based authentication for the
MyID Core API. This allows you to call the MyID Core API using the credentials of a person in
the MyID system, using the MyID authentication service to authenticate their credentials,
whether security phrases, smart card, FIDO authenticator, or any other authentication
method for which MyID is configured.

To set up end-user based authentication, you must carry out the following:

• Configure the web.oauth2 web service with the ID of your client system.

See section 4.1, Configuring web.oauth2 for end-user based authentication.

• Authenticate your user account and obtain an access token for your system to use.

See section 4.2,Obtaining an end-user based access token using PKCE or section 4.3,
Obtaining an end-user based access token using a client secret.

• Optionally, configure your system to allow refresh tokens.

See section 4.4, Using refresh tokens.

• Revoke access tokens when they are no longer required.

See section 4.5, Revoking access tokens.

For more information on end-user authentication, see the Authorization Code section of the
OAuth 2.0 Authorization Framework:

tools.ietf.org/html/rfc6749#section-1.3.1

4.1 Configuring web.oauth2 for end-user based authentication
The MyID authentication web service is called web.oauth2; you must configure this web
service to allow access to the API. For end-user based authentication, you do this by
configuring the server for acquisition of an access token, secured either by PKCE or a client
secret.

Note: Before you begin, you must decide on a client ID for your external system; for example,
myid.myclient. This represents your application (for example, website) that intends to make
calls to the MyID Core API.

4.1.1 Configuring the authentication service for PKCE
For single-page apps, which run entirely on the client PC, you must secure the request for
authentication using PKCE. This ensures that only the caller of the authorization can use the
authorization code to request an access token.

1. In a text editor, open the appsettings.Production.json file for the web service.

By default, this is:
C:\Program Files\Intercede\MyID\web.oauth2\appsettings.Production.json

This file is the override configuration file for the appsettings.json file for the web
service. If this file does not already exist, you must create it in the same folder as the
appsettings.json file.

https://tools.ietf.org/html/rfc6749#section-1.3.1

MyID Core API Page 24 of 49

2. Edit the file to include the following:

{
"Clients": [
{

"ClientId": "<my client ID>",
"ClientName": "<my client name",
"AccessTokenLifetime": <time>,
"AllowedGrantTypes": [

"authorization_code"
],

"RequireClientSecret": false,
"RequirePkce": true,
"AllowAccessTokensViaBrowser": true,
"RequireConsent": false,
"AllowedScopes": [

"myid.rest.basic"
],

"RedirectUris": [
"<callback URL>"

]
 }
]
}

where:

• <my client ID> – the client ID you decided on; for example:
myid.mysystem

• <my client name> – an easily readable name for your client system; for example:
My Client System

• <time> – the time (in seconds) that the client credential is valid. The default is 3600 –
1 hour.

• <callback URL> – the URL of the web page on your system to which the
authorization code will be returned.

MyID Core API Page 25 of 49

For example:

{
"Clients": [
{

"ClientId": "myid.myclient",
"ClientName": "My Client System",
"AccessTokenLifetime": 3600,
"AllowedGrantTypes": [

"authorization_code"
],

"RequireClientSecret": false,
"RequirePkce": true,
"AllowAccessTokensViaBrowser": true,
"RequireConsent": false,
"AllowedScopes": [
"myid.rest.basic"

],
"RedirectUris": [

"https://myserver/mysystem/callback.asp"
]
 }
]
}

If you already have an appsettings.Production.json file, back up the existing file,
then incorporate the new client section above into the file.

Important: If you have clients in the appsettings.json file and the
appsettings.Production.json file, make sure the production file does not overwrite
the entries in the base file. In these settings files, entries in arrays are determined by their
index; therefore if you have four existing entries in the appsettings.json file, you must
include four blank array entries {}, in the appsettings.Production.json file before
you include your new client details. Alternatively, you can include the entire Clients
array in the appsettings.Production.json file.

3. Save the configuration file.

4. Recycle the web service app pool:

a. On the MyID web server, in Internet Information Services (IIS) Manager, select
Application Pools.

b. Right-click themyid.web.oauth2.pool application pool, then from the pop-up menu
click Recycle.

This ensures that the web service has picked up the changes to the configuration file.

5. Check that the web.oauth2 server is still operational by logging on to the MyID Operator
Client.

Application setting JSON files are sensitive to such issues as comma placement; if the
format of the file is not correct, the web service cannot load the file and will not operate,
which may result in an error similar to:
HTTP Error 500.30 - ANCM In-Process Start Failure

MyID Core API Page 26 of 49

See section 7, Troubleshooting for information on resolving problems that cause HTTP
Error 500.30.

You can now obtain an access token; see section 4.2,Obtaining an end-user based access
token using PKCE.

4.1.2 Configuring the authentication service for a client secret
For stateful web sites, where for example the server uses cookies to map stateful sessions
between the client and the web server, it is recommended to configure the authentication
service to require a client secret; you do not have to use PKCE, but you can use it in addition
to the client secret if you want.

Note: The following instructions assume that you are using a client secret without PKCE. If
you want to use both a client secret and PKCE, you can set both the RequireClientSecret
and RequirePkce options to true, and then combine the requests for an authentication code
and access token from section 4.2,Obtaining an end-user based access token using PKCE
and section 4.3,Obtaining an end-user based access token using a client secret.

Before you edit the configuration file, create a client secret; see section 3.2.1, Creating a
shared secret.

1. In a text editor, open the appsettings.Production.json file for the web service.

By default, this is:
C:\Program Files\Intercede\MyID\web.oauth2\appsettings.Production.json

This file is the override configuration file for the appsettings.json file for the web
service. If this file does not already exist, you must create it in the same folder as the
appsettings.json file.

MyID Core API Page 27 of 49

2. Edit the file to include the following:

{
"Clients":[

{
"ClientId":"<my client ID>",
"ClientName":"<my client name",
"AccessTokenLifetime": <time>,
"AllowedGrantTypes":[

"authorization_code"
],

"RequireClientSecret":true,
"RequirePkce":false,
"AllowAccessTokensViaBrowser":true,
"RequireConsent":false,
"ClientSecrets":[

{
"Value":"<secret>"

 }
],

"AllowedScopes":[
"myid.rest.basic"

],
"RedirectUris":[

"<callback URL>"
]
 }
]
}

where:

• <my client ID> – the client ID you decided on; for example:
myid.mysystem

• <my client name> – an easily readable name for your client system; for example:
My Client System

• <time> – the time (in seconds) that the client credential is valid. The default is 3600 –
1 hour.

• <secret> – the Base64-encoded SHA-256 hash of the secret you created; for
example:
kv31VP5z/oKS0QMMaIfZ2UrhmQOdgAPpXV/vaF1cymk=

• <callback URL> – the URL of the web page on your system to which the
authorization code will be returned.

MyID Core API Page 28 of 49

For example:

{
"Clients":[

{
"ClientId":"myid.myclient",
"ClientName":"My Client System",
"AccessTokenLifetime":3600,
"AllowedGrantTypes":[

"authorization_code"
],

"RequireClientSecret":true,
"RequirePkce":false,
"AllowAccessTokensViaBrowser":true,
"RequireConsent":false,
"ClientSecrets":[

{

"Value":"kv31VP5z/oKS0QMMaIfZ2UrhmQOdgAPpXV/vaF1cymk="
 }
],

"AllowedScopes":[
"myid.rest.basic"

],
"RedirectUris":[

"https://myserver/mysystem/callback.asp"
]
 }
]
}

If you already have an appsettings.Production.json file, back up the existing file,
then incorporate the new client section above into the file.

Important: If you have clients in the appsettings.json file and the
appsettings.Production.json file, make sure the production file does not overwrite
the entries in the base file. In these settings files, entries in arrays are determined by their
index; therefore if you have four existing entries in the appsettings.json file, you must
include four blank array entries {}, in the appsettings.Production.json file before
you include your new client details. Alternatively, you can include the entire Clients
array in the appsettings.Production.json file.

3. Save the configuration file.

4. Recycle the web service app pool:

a. On the MyID web server, in Internet Information Services (IIS) Manager, select
Application Pools.

b. Right-click themyid.web.oauth2.pool application pool, then from the pop-up menu
click Recycle.

This ensures that the web service has picked up the changes to the configuration file.

5. Check that the web.oauth2 server is still operational by logging on to the MyID Operator
Client.

MyID Core API Page 29 of 49

Application setting JSON files are sensitive to such issues as comma placement; if the
format of the file is not correct, the web service cannot load the file and will not operate,
which may result in an error similar to:
HTTP Error 500.30 - ANCM In-Process Start Failure

See section 7, Troubleshooting for information on resolving problems that cause HTTP
Error 500.30.

You can now obtain an access token; see section 4.3,Obtaining an end-user based access
token using a client secret.

MyID Core API Page 30 of 49

4.2 Obtaining an end-user based access token using PKCE
Once you have configured the web.oauth2 web service for PKCE, you can request your user-
based authentication code, and use that to obtain an access token that you can use to call the
API.

For more information on PKCE, including details of requirements for the code verifier and
code challenge, see the Proof Key for Code Exchange by OAuth Public Clients RFC:

tools.ietf.org/html/rfc7636

4.2.1 Generating a PKCE code verifier and code challenge
The PKCE code verifier and code challenge are used to request the authorization code.

1. Generate a cryptographically-random key.

This is the code verifier.

The code verifier must be a high-entropy cryptographic random string using the following
characters:
[A-Z] / [a-z] / [0-9] / "-" / "." / "_" / "~"

The minimum length is 43 characters, and the maximum length is 128 characters.

2. Generate a SHA-256 hash of this key, then encode it using Base64 URL encoding.

This is the code challenge.

Important: Base64 URL encoding is slightly different to standard Base64 encoding.
See the Protocol section of the PKCE standard for details of requirements for the code
verifier and code challenge:

tools.ietf.org/html/rfc7636#section-4
Example PowerShell script for generating a code challenge from a given code verifier:

$code_verifier ='TiGVEDHIRkdTpif4zLw8v6tcdG2VJXvP4r0fuLhsXIj'

Hash the code verifier using SHA-256
$hasher = [System.Security.Cryptography.HashAlgorithm]::Create("sha256")
$hashOfSecret = $hasher.ComputeHash([System.Text.Encoding]::UTF8.GetBytes($code_verifier))

Convert to Base64 URL encoded (slightly different to normal Base64)
$clientSecret = [System.Convert]::ToBase64String($hashOfSecret)
$clientSecret = $clientSecret.Split('=')[0]
$clientSecret = $clientSecret.Replace('+', '–')
$clientSecret = $clientSecret.Replace('/', '_')

Output the results
Write-Output ("`r`nThe code verifier is: `r`n`r`n$code_verifier")
Write-Output ("`r`nAnd code challenge is:`r`n`r`n$clientSecret")

Wait for a keypress
Write-Host "`r`nPress any key to continue...`r`n" -ForegroundColor Yellow
[void][System.Console]::ReadKey($true)

https://tools.ietf.org/html/rfc7636
https://tools.ietf.org/html/rfc7636#section-4

MyID Core API Page 31 of 49

4.2.2 Requesting an authorization code
You must use the PKCE code challenge to request an authorization code from the MyID
authentication service, and provide your user credentials.

1. From your website, post the following information to the MyID authorization URL:
https://<server>/web.oauth2/connect/authorize

• client_id – the ID of your system; for example:
myid.myclient

• scope – set this to myid.rest.basic

• redirect_uri – set this to the URL of the page on your website to which the
authorization code will be returned. This must be the same as the URL you specified
in the appsettings.Production.json file.

• response_type – set this to code

• code_challenge – set this to the code challenge you generated. This is the Base64
URL-encoded SHA-256 hash of the random code verifier you created.

• code_challenge_method – set this to S256

When you post this request, the MyID authentication service prompts you for your user
credentials. The available methods of authentication depend on how you have
configured your system; the same methods are available for authentication as are
available in the MyID Operator Client.

2. Complete the authentication using your method of choice; for example, security
questions or smart card.

Note: You may need to ensure that the MyID Client Service is running on your PC.

MyID Core API Page 32 of 49

3. Capture the code parameter that is returned to the page you specified in the redirect_
uri parameter.

This is your authorization code, which can be used once to request an access token. You
can use the access token repeatedly until it expires, but if you need to request another
access token, you must first request another authorization code and go through the user
authentication procedure again.

4.2.3 Requesting an access token
Once you have your authorization code, you can request an access token that allows you to
call the API.

1. Post the following information to the MyID token URL:
https://<server>/web.oauth2/connect/token

• grant_type – set this to authorization_code

• client_id – the ID of your system; for example:
myid.myclient

• code_verifier – set this to the code verifier you created.

Note: Do not use the Base64 URL-encoded SHA-256 hash (the code challenge) –
use the original plaintext value. The server compares this value to the encoded hash
you provided when you requested the authorization code.

• code – set this to the authorization code you obtained from the server.

• redirect_uri – set this to the URL of the page on your website to which the access
token will be returned. This must be the same as the URL you specified when you
requested the authorization code.

2. Capture the access_token that is returned.

You can now use this access token to call the API.

See section 5.1, Calling the API from an external system for more information on using
an access token.

The request returns a block of JSON containing the following:

• access_token – your access token.

• expires_in – the lifetime in seconds for the token. Once the lifetime has expired, you
must request a new access token.

• token_type – always Bearer.

• scope – the scope configured for the client in the web.oauth2 web service; usually
myid.rest.basic.

MyID Core API Page 33 of 49

4.3 Obtaining an end-user based access token using a client secret
Once you have configured the web.oauth2 web service for a client secret, you can request
your user-based authentication code, and use that to obtain an access token that you can
use to call the API.

4.3.1 Requesting an authorization code
You must use the client secret to request an authorization code from the MyID authentication
service, and provide your user credentials.

1. From your website, post the following information to the MyID authorization URL:
https://<server>/web.oauth2/connect/authorize

• client_id – the ID of your system; for example:
myid.myclient

• scope – set this to myid.rest.basic

• redirect_uri – set this to the URL of the page on your website to which the
authorization code will be returned. This must be the same as the URL you specified
in the appsettings.Production.json file.

• state – this value is returned in the redirect, allowing you to persist data between the
authorization request and the response; you can use this as a session key.

• response_type – set this to code

When you post this request, the MyID authentication service prompts you for your user
credentials. The available methods of authentication depend on how you have
configured your system; the same methods are available for authentication as are
available in the MyID Operator Client.

MyID Core API Page 34 of 49

2. Complete the authentication using your method of choice; for example, security
questions or smart card.

Note: You may need to ensure that the MyID Client Service is running on your PC.

3. Capture the code parameter that is returned to the page you specified in the redirect_
uri parameter.

This is your authorization code, which can be used once to request an access token. You
can use the access token repeatedly until it expires, but if you need to request another
access token, you must first request another authorization code and go through the user
authentication procedure again.

4.3.2 Requesting an access token
Once you have your authorization code, you can request an access token that allows you to
call the API.

1. Post the following information to the MyID token URL:
https://<server>/web.oauth2/connect/token

• grant_type – set this to authorization_code

• client_id – the ID of your system; for example:
myid.myclient

• client_secret – set this to the plaintext of the client secret you configured for the
authentication service.

Note: Alternatively, you can combine the client_id and the client_secret and
post them as a Basic authentication header; see section 3.3.1, Requesting an
access token for details.

• code – set this to the authorization code you obtained from the server.

• redirect_uri – set this to the URL of the page on your website to which the access
token will be returned. This must be the same as the URL you specified when you
requested the authorization code.

2. Capture the access_token that is returned.

You can now use this access token to call the API.

See section 5.1, Calling the API from an external system for more information on using
an access token.

The request returns a block of JSON containing the following:

• access_token – your access token.

• expires_in – the lifetime in seconds for the token. Once the lifetime has expired, you
must request a new access token.

• token_type – always Bearer.

• scope – the scope configured for the client in the web.oauth2 web service; usually
myid.rest.basic.

MyID Core API Page 35 of 49

4.4 Using refresh tokens
You can configure the web.oauth2 authentication server to allow you to extend your
authenticated session after obtaining the initial access token using a refresh token.

The process is as follows:

1. Configure the authentication server to allow refresh tokens.

See section 4.4.1, Configuring the authentication server.

2. Call the authentication /connect/authorize endpoint with a scope that allows refresh
tokens.

See section 4.4.2,Obtaining the authorization code.

3. Call the authentication /connect/token endpoint and receive a refresh token in addition
to the access token.

See section 4.4.3,Obtaining the access and refresh tokens.

4. If the access token has expired, or is close to expiry, call the authentication
/connect/token endpoint with the refresh token to obtain a fresh access token and
refresh token without having to re-authenticate.

See section 4.4.4, Using the refresh token to obtain a new access token.

5. Repeat the process of obtaining fresh access tokens and refresh tokens as often as
required. You can use a refresh token up until its expiry (by default, after two hours) so if
you are continually making calls to the API, and can request a fresh access token and
refresh token every two hours, you do not need to authenticate until you hit the limit (by
default, six days).

This is the same feature of the authentication server that is used for timeouts and re-
authentication for the MyID Operator Client; for information about how this system works, see
the Timeouts and re-authentication section in theMyID Operator Client guide.

MyID Operator Client.pdf

MyID Core API Page 36 of 49

4.4.1 Configuring the authentication server
You can configure the authentication server for end-user authentication using either PKCE or
client secrets; see section 4.1.1, Configuring the authentication service for PKCE or section
4.1.2, Configuring the authentication service for a client secret.

To allow the use of refresh tokens, you must make the following additional configuration
changes:

1. In a text editor, open the appsettings.Production.json file for the web service.

By default, this is:
C:\Program Files\Intercede\MyID\web.oauth2\appsettings.Production.json

This file is the override configuration file for the appsettings.json file for the web
service. If this file does not already exist, you must create it in the same folder as the
appsettings.json file.

2. In the client section for your API client, add the following settings:

• AllowOfflineAccess – set to true to allow refresh tokens.

• SlidingRefreshTokenLifetime – the number of seconds within which you can
extend the authentication. The default is 7200 (two hours).

• AbsoluteRefreshTokenLifetime – the number of seconds after which you must re-
authenticate, even if you have been continually extending the authentication. The
default is 518400 (six days).

For example:

"Clients": [
{
"ClientId": "myid.mysystem",
"ClientName": "My External System",
"AllowOfflineAccess": true,
"SlidingRefreshTokenLifetime": 7200,
"AbsoluteRefreshTokenLifetime": 518400,

 ...

3. Save the configuration file.

4. Recycle the web service app pool:

a. On the MyID web server, in Internet Information Services (IIS) Manager, select
Application Pools.

b. Right-click themyid.web.oauth2.pool application pool, then from the pop-up menu
click Recycle.

This ensures that the web service has picked up the changes to the configuration file.

MyID Core API Page 37 of 49

4.4.2 Obtaining the authorization code
You can call the /connect/authorize endpoint to obtain an authorization code using either
PKCE or a client secret; see section 4.2.2, Requesting an authorization code (for PKCE) or
section 4.3.1, Requesting an authorization code (for client secrets).

When you request the authorization code, instead of requesting a scope of
myid.rest.basic, request a scope of:
myid.rest.basic offline_access

This means that when you request an access token using the returned authorization code, it
will additionally provide a refresh token.

4.4.3 Obtaining the access and refresh tokens
You can call the /connect/token endpoint to obtain an access token using either PKCE or a
client secret; see section 4.2.3, Requesting an access token (for PKCE) or section 4.3.2,
Requesting an access token (for client secrets).

If you have configured the authentication server to allow it, and added the offline_access
scope to the request for the authorization code, the request returns a block of JSON
containing the following:

• access_token – your access token.

• expires_in – the lifetime in seconds for the access token. Determined by the
AccessTokenLifetime setting in the web.oauth2 application settings file.

• token_type – always Bearer.

• refresh_token – your refresh token, which will be valid for the number of seconds
determined by the SlidingRefreshTokenLifetime setting in the web.oauth2
application settings file.

• scope – myid.rest.basic offline_access.

MyID Core API Page 38 of 49

4.4.4 Using the refresh token to obtain a new access token
If the access token has expired, or is about to expire (which you can determine from the
expires_in node of the returned JSON), you can use your refresh token to obtain a fresh
access token.

1. Post the following information to the MyID token URL:
https://<server>/web.oauth2/connect/token

• client_id – the ID of your system; for example:
myid.myclient

• grant_type – set this to refresh_token

• refresh_token – set this to refresh token you obtained previously.

2. Capture the fresh access_token and refresh_token that are returned in the block of
JSON.

You can now use this access token to call the API, and can use the new refresh token to
obtain further access tokens as necessary.

Note: If the old access token has not yet expired, you can continue to use it; requesting a
fresh access token does not invalidate the previous one. However, you can use a refresh
token only once.

If your access token has expired and your refresh token has expired, or if you have exceeded
the limit since the original authorization code was requested (as determined by the
AbsoluteRefreshTokenLifetime setting in the web.oauth2 application settings file) you
must call /connect/authorize again to re-authenticate.

If the refresh token has expired, or if the AbsoluteRefreshTokenLifetime limit has been
exceeded, a response of invalid_grant is returned.

MyID Core API Page 39 of 49

4.5 Revoking access tokens
You can revoke an access token for the web.oauth2 authentication server; the server
supports the OAuth2/OpenID Connect revocation endpoint.

Where the token contains a scope that allows accessing the MyID Core API, the revocation
endpoint updates the MyID database to ensure that the access token can no longer be used.

If you are using refresh tokens , these are also invalidated.

Note: Revoking a token that does not include a scope that relates to the MyID database (for
example, if it does not have myid.rest.basic scope because the token is used for products
outside of MyID) invalidates any refresh tokens, but the access token remains valid until
expiry. This is because an access token is valid until expiry, unless there is a back-end
system that can be updated to indicate that access token is no longer valid.

To call the revocation endpoint, post the following information to the MyID revocation URL,
formatted according to the RFC for OAuth 2.0 Token Revocation (RFC 7009):
https://<server>/web.oauth2/connect/revocation

• client_id – the ID of your system; for example:
myid.myclient

• token – set this to the access token.

• token_type_hint – set this to:
access_token

MyID Core API Page 40 of 49

5 Calling the API
You must configure your server for the appropriate method of authentication.

• To configure the server and obtain an access token for server-to-server authentication,
see section 3, Server-to-server authentication.

• To configure the server and obtain an access token for user authentication, see section
4, End-user authentication.

Once you have obtained an access token, you can call the API from an external system; see
section 5.1, Calling the API from an external system.

You can also call the API from within the Swagger-based documentation; see section 5.2,
Calling the API from the documentation.

5.1 Calling the API from an external system
Once you have obtained an access token, you can call the API.

Present the access token in an Authorization header with a type of Bearer (as detailed in
the token_type option in the returned JSON containing your access token).

Important: You must keep track of the lifetime of the token, and request a new token when
the current token has expired. Avoid obtaining a new access token if the previous token is still
valid, as this generates unnecessary records in the Logons table in the MyID database, and
may impact your system performance.

For example, to view the details of a particular person, you use the following:
GET /api/People/{id}

This method requires a parameter dirInfo and the ID of the person – this example uses the
following ID:
53F2A29B-376B-4600-867C-2E5BD95AE222

See the API documentation for the particular requirements for each method.

For example, using cURL:

curl -k -i -X GET "https://myserver.example.com/rest.core/api/People/53F2A29B-376B-4600-
867C-2E5BD95AE222" -d "dirInfo=true" -H "Authorization: Bearer <token string>"

or using PowerShell:

Access token for the API
$token = "<token string>"

Set the body of the request. The parameters depend on the method being used;
see the Swagger-based API documentation for details.
$body = @{dirInfo='true'
 }

Set the headers for the request
$header = @{Authorization="Bearer $token"
 }

Call the method. This example obtains the information about a particular

MyID Core API Page 41 of 49

person. The user configured for the API must have access to this feature
through their role assignment, and must have scope that allows them to
view the details of the specified person.
Invoke-WebRequest -Method GET -Uri
'https://myserver.example.com/rest.core/api/People/53F2A29B-376B-4600-867C-2E5BD95AE222' -
body $body -Headers $header | Select-Object -Expand Content

Wait for a keypress
Write-Host "`r`nPress any key to continue..." -ForegroundColor Yellow

[void][System.Console]::ReadKey($true)

5.2 Calling the API from the documentation
The Swagger-based documentation for the API allows you to try the methods from within the
documentation itself, once you have configured the server for the appropriate method of
authentication.

5.2.1 Calling the API from the documentation using server-to-server authentication
Once you have configured the web server for server-to-server authentication, you can also
use the client ID and shared secret to authenticate to the server to access the API features
from the Swagger-based API documentation:

1. Open the API documentation in a browser.

See section 2.1, Accessing the API documentation for details.

2. Click Authorize.

The Available authorizations screen appears.

MyID Core API Page 42 of 49

3. In the oauth2 (OAuth2, clientCredentials) section, enter the following:

• client_id – your client ID; for example, myid.mysystem.

• client_secret – your client secret; for example:
82564d6e-c4a6-4f64-a6d4-cac43781c67c

Note: Do not use the combined client ID and Base64 version of the client secret.

• Scopes – select themyid.rest.basic option.

4. Click Authorize.

5. Click Close.

5.2.2 Calling the API from the documentation using end-user authentication
You can use end-user authentication to access the API from within the documentation.

1. Edit the appsettings.json file for the web.oauth2 web service to include the Swagger
callback URL.

a. Open the appsettings.json file in a text editor.

By default, this is:
C:\Program Files\Intercede\MyID\web.oauth2\appsettings.json

Note: If you have an appsettings.Production.json file, use that instead. This is
the override configuration file for the appsettings.json file for the web service.

MyID Core API Page 43 of 49

b. In the Clients section, under the myid.operatorclient settings, add the following
to the RedirectUris array:
https://<server>/rest.core/swagger/oauth2-redirect.html

where <server> is the name of your MyID authentication. For example:
"RedirectUris": [

"https://react.domain31.local/MyID/OperatorClient",

"https://react.domain31.local/rest.core/swagger/oauth2-

redirect.html"

]

2. Click Authorize.

3. The Available authorizations screen appears.

4. Scroll to the oauth2 (OAuth2, authorizationCode) section, and enter the following:

• client_id – enter myid.operatorclient.
If you have set up your own system to use end-user authentication, you can use this
client ID instead.

• Scopes – select themyid.rest.basic option.

MyID Core API Page 44 of 49

5. Click Authorize.

6. Complete the authentication using your method of choice; for example, security
questions or smart card.

Note: You may need to ensure that the MyID Client Service is running on your PC.

7. Click Close.

MyID Core API Page 45 of 49

6 Operation extension
You can extend the authorization for your API calls to call additional operations through the
MyID Client Service; this allows you to carry out some operations (for example, resetting a
device PIN) by launching MyID Desktop;. you can use this feature to carry out actions that are
not yet supported by the MyID Core API. You can also carry out operations provided by the
MyID Client Service; for example, using the Select Security Device dialog to select a device.

You can carry out the following:

• Using the MyID Client Service API to launch an operation.

See section 6.1,Obtaining an operation extension token.

• Using the MyID Client Service API to open the Select Security Device dialog.

section 6.2,Obtaining an extension token for Select Security Device.

The MyID Client Service API documentation is available in the MyID Integration Toolkit,
available on request.

6.1 Obtaining an operation extension token
Before you can call the MyID Client Service API to launch MyID Desktop, you must obtain an
operation extension token for this particular operation on this particular object (for example,
device, request, or person) – this is a short-lived authorization code for a single use.

When you call the MyID Core API, the block of data returned contains a series of links. If a
link has a cat of myid.mcs, this means you can carry out this operation using the MyID Client
Service.

For example:

{
"op":"297",
"cat":"myid.mcs",
"desc":"Reset Card PIN",
"verb":"",
"auth":"client_id=myid.mcs&grant_
type=operation&op=297&scope=myid.operation&deviceId=<DEVICE ID>&token={token}",
"clientData":["DSK"]
}

You can use this information to obtain an operation extension token, then use this token to
call the MyID Client Service API to launch the workflow.

MyID Core API Page 46 of 49

To request the operation extension:

1. Post the following information to the MyID token URL:
https://<server>/web.oauth2/connect/token

• client_id – set this to myid.mcs

• grant_type – set this to operation

• op – set this to the ID of the operation you want to carry out.

For example:

• Operation ID 297 is Reset PIN.

• Operation ID 5007 is Assisted Activation.

You can obtain the operation ID from the link data.

• scope – set this to myid.operation

• deviceId, personId, or requestId – provide the ID of a single device, person, or
request. You can obtain the ID from the link data.

• token – set this to your existing authorization token.

See section 3.3,Obtaining a server-to-server access token, section 4.2,Obtaining
an end-user based access token using PKCE, or section 4.3,Obtaining an end-user
based access token using a client secret for details.

2. Capture the access token that is returned.

You can now use this access token in the Token argument of the StartWithToken
method of the MyID Client Service API to launch MyID Desktop for the specified
operation and target.

6.2 Obtaining an extension token for Select Security Device
Before you can call the MyID Client Service API to open the Select Security Device dialog
authenticated with the logged-on operator, you must obtain an extension token for this
particular operation – this is a short-lived authorization code for a single use.

Note: This authenticated mode provides user images and full names on the smart card
selection screen based on the scope and administration groups of the logged-on user. If you
do not need to display this additional detail, you can call the SelectCardmethod of the MyID
Client Service API without the Token parameter; in this case, you do not need to obtain an
extension token.

To use authenticated mode, you must ensure that the MyID web.oauth2 server is configured
to allow a scope of myid.devicepicker. Check the appsettings.json file (by default, in the
C:\Program Files\Intercede\MyID\web.oauth2\ folder) for the following:

• In the Scopes array, a scope called myid.devicepicker exists, with the following
UserClaims:
• deviceDetectContext

• op

• myidSessionId

MyID Core API Page 47 of 49

• In the ApiResources array, for the resource with name myid.mws, the scope
myid.devicepicker is in the Scopes array.

• In the Clients array, for the client with ID myid.mcs, the scope myid.devicepicker is in
the AllowedScopes array.

To obtain the extension token:

1. Post the following information to the MyID token URL:
https://<server>/web.oauth2/connect/token

• client_id – set this to myid.mcs

• grant_type – set this to operation

• op – set this to the ID of the Read Card (Authenticated) operation. This is 100221.

• scope – set this to myid.devicepicker

• token – set this to your existing authorization token.

See section 3.3,Obtaining a server-to-server access token, section 4.2,Obtaining
an end-user based access token using PKCE, or section 4.3,Obtaining an end-user
based access token using a client secret for details.

• deviceDetectContext – reserved for future use. Leave as an empty query
parameter.

2. Capture the access token that is returned.

You can now use this access token in the Token argument of the SelectCardmethod of
the MyID Client Service API to launch the Select Security Device dialog authenticated
with the logged-on operator.

MyID Core API Page 48 of 49

7 Troubleshooting
If you experience problems when attempting to use the MyID Core API:

• Check that you have set up the server-to-server authentication correctly.

See section 3, Server-to-server authentication.

• For PKCE-based end-user authentication, check that you have set up PKCE correctly.

See section 4.2.1,Generating a PKCE code verifier and code challenge, and see the
PKCE standard for details of requirements for the code verifier and code challenge:

tools.ietf.org/html/rfc7636
Make sure you are using Base64 URL encoding to create the code challenge, and not
simply Base64 encoding.

• Review the documentation to ensure that you are using the API calls correctly.

See section 2.1, Accessing the API documentation.

• Check that you have configured access to the API for the features you want to use.

See section 2.2, Accessing the API features.

• If you cannot see the people, requests, devices and so on that you expect, check that the
operator account used to access the API has the correct scope.

See section 2.2.1, Scope.

• If you have clients in the appsettings.json file and the
appsettings.Production.json file, make sure the production file does not overwrite
the entries in the base file. In these settings files, entries in arrays are determined by their
index; therefore if you have four existing entries in the appsettings.json file, you must
include four blank array entries {}, in the appsettings.Production.json file before
you include your new client details. Alternatively, you can include the entire Clients
array in the appsettings.Production.json file.

• Application setting JSON files are sensitive to such issues as comma placement; if the
format of the file is not correct, the web service cannot load the file and will not operate,
which may result in an error similar to:
HTTP Error 500.30 - ANCM In-Process Start Failure

https://tools.ietf.org/html/rfc7636

MyID Core API Page 49 of 49

Note especially that copying code samples from a browser may include hard spaces,
which cause the JSON file to be invalid.

To assist in tracking down the problem, you can use the Windows Event Viewer. Check
theWindows Logs > Application section for errors; you may find an error from the
.NET Runtime source that contains information similar to:
Exception Info: System.FormatException: Could not parse the JSON file.

---> System.Text.Json.JsonReaderException: '"' is invalid after a

value. Expected either ',', '}', or ']'. LineNumber: 13 |

BytePositionInLine: 6.

which could be caused by a missing comma at the end of a line.

An error similar to:
Exception Info: System.FormatException: Could not parse the JSON file.

---> System.Text.Json.JsonReaderException: '0xC2' is an invalid start

of a property name. Expected a '"'. LineNumber: 7 | BytePositionInLine:

0.

is caused by a hard (non-breaking) space copied from a web browser, which is not
supported in JSON.

Note: Some JSON files used by MyID contain comment lines beginning with double
slashes // – these comments are not supported by the JSON format, so the JSON files
will fail validation if you attempt to use external JSON validation tools. However, these
comments are supported in the JSON implementation provided by asp.net.core, and so
are valid in the context of MyID.

• If you see an error message, look up the error code.

See the Error Code Reference guide for a list of errors codes, their causes, and
potential solutions.

• Enable logging on the rest.core and web.oauth2 web services.

See theMyID REST and authentication web services section in the Configuring
Logging guide.

Error Code Reference.pdf
Configuring Logging.pdf
Configuring Logging.pdf

	MyID Core API
	Copyright
	Conventions used in this document
	Contents
	1 Introduction
	2 Configuring access
	2.1 Accessing the API documentation
	2.2 Accessing the API features
	2.2.1 Scope

	3 Server-to-server authentication
	3.1 Configuring MyID for server-to-server authentication
	3.1.1 Allowing the Client Credentials OAuth2 logon mechanism
	3.1.2 Creating a role for the external system
	3.1.3 Selecting a group for the user account
	3.1.4 Creating a user account for the external system

	3.2 Configuring web.oauth2 for server-to-server authentication
	3.2.1 Creating a shared secret
	3.2.2 Configuring the authentication service

	3.3 Obtaining a server-to-server access token
	3.3.1 Requesting an access token
	3.3.2 Providing a client identifier

	4 End-user authentication
	4.1 Configuring web.oauth2 for end-user based authentication
	4.1.1 Configuring the authentication service for PKCE
	4.1.2 Configuring the authentication service for a client secret

	4.2 Obtaining an end-user based access token using PKCE
	4.2.1 Generating a PKCE code verifier and code challenge
	4.2.2 Requesting an authorization code
	4.2.3 Requesting an access token

	4.3 Obtaining an end-user based access token using a client secret
	4.3.1 Requesting an authorization code
	4.3.2 Requesting an access token

	4.4 Using refresh tokens
	4.4.1 Configuring the authentication server
	4.4.2 Obtaining the authorization code
	4.4.3 Obtaining the access and refresh tokens
	4.4.4 Using the refresh token to obtain a new access token

	4.5 Revoking access tokens

	5 Calling the API
	5.1 Calling the API from an external system
	5.2 Calling the API from the documentation
	5.2.1 Calling the API from the documentation using server-to-server authentication
	5.2.2 Calling the API from the documentation using end-user authentication

	6 Operation extension
	6.1 Obtaining an operation extension token
	6.2 Obtaining an extension token for Select Security Device

	7 Troubleshooting

